+51 942263471 – +51 1 7073436
gcordova@inducom.com.pe | ventas@inducom.com.pe

CARACTERÍSTICAS DEL INTERCAMBIADOR DE CALOR

-COEFICIENTE GLOBAL DE TRANSFERENCIA DE CALOR (U).

Se tiene mayor coeficiente global de Transferencia de Calor (U), hasta cinco veces mayores a los que se pueden conseguir en equipos de carcasa y tubos.

Este depende de los coeficientes de Transferencia de Calor por convección de los fluidos frío y caliente, además está influenciado por la forma de las ondulaciones de las placas.

ÁREA DE TRANSFERENCIA.

Menor área de transferencia se consigue en el intercambiador de calor. Esta característica es muy valiosa cuando la naturaleza del líquido es corrosiva y se requiere trabajar con materiales de construcción muy caros.

-PRESIÓN.

La placa de metal con o sin ondulaciones, no es el elemento adecuado para soportar presiones elevadas, de modo que las presiones máximas para los tipos más comunes son de (1,0 a 1,5)*106 [Pa], aunque existen placas capaces de soportar presiones algo mayores. Este problema no es tan notorio en los intercambiadores termo-soldados que pueden llegar a soportar presiones de (3,0 a 3,2)*106 [Pa]. Esto se debe a que no se tiene el riesgo de rotura de la junta. Entonces, las altas presiones son la principal limitación que presenta este prototipo.

-MATERIALES.

Los materiales de las juntas son de varios tipos de elastómeros que tienen un límite máximo de temperatura de funcionamiento (para los materiales más usados) es de 140 a 150 ºC. Los flúor – elastómeros pueden aumentar ese límite hasta los 180 ºC, pero a cambio de un mayor costo. Existen algunos modelos que usan juntas de fibras de amianto comprimido, para los cuales la temperatura límite asciende hasta un máximo de 250 ºC. Por el hecho de no llevar estas juntas, los intercambiadores termo-soldados son capaces de aguantar temperaturas superiores a los 140 -150 ºC de los de tipo junta.

-TAMAÑO.

Tamaño compacto, es decir necesitan una gran área de transferencia por unidad de volumen. El peso y el volumen de la instalación son bajos.

-COSTO INICIAL.

Menor inversión. Se tiene un menor costo como consecuencia de necesitar menor área de transferencia.

-FLUJOS.

Permiten la aplicación de flujos en contracorriente en la mayoría de las aplicaciones.

-TEMPERATURAS.

Aproximaciones de temperatura más cercanas. Se puede trabajar incluso con diferencias de temperatura de hasta 1ºC, maximizando la posibilidad de recuperación de calor. En el control de la temperatura, la forma de los canales de circulación reduce la posibilidad de zonas de retención o estancamiento y sobrecalentamientos locales.

La simetría de la configuración para ambos fluidos permite predecir de antemano y con toda precisión las caídas de presión y la temperatura.

-VOLUMEN DE RETENCIÓN.

Bajo volumen de retención. De un 80 a un 90% menor, lo que genera importantes ahorros cuando se utilizan fluidos costosos, como glicoles y refrigerantes. También es fácil de drenar.

-SUCIEDAD.

Poca acumulación de suciedad. Los factores de acumulación son menores que en el caso de carcasa y tubos. Esta característica presenta dos ventajas, menor necesidad de limpieza, y menores resistencias de ensuciamiento que provocan coeficientes de transferencia globales más pequeños.

-ADAPTABILIDAD DEL INTERCAMBIADOR DE CALOR

La capacidad puede aumentarse o disminuirse con sólo poner o quitar placas. La modificación de la disposición de las placas permite modificar fácilmente el programa de temperaturas de trabajo e incluso su utilización en distintos procesos. Esta característica no la presentan los del tipo termo-soldados ya que su desmontaje y ampliación son imposibles. En el caso de los de carcasa y tubos no es fácil adaptarlos a los cambios de la demanda térmica.

RANGO DE FUNCIONAMIENTO.

Amplio rango de funcionamiento. Incluso sin la necesidad de modificar el número de placas estos permiten un amplio rango de utilización.

-FLEXIBILIDAD

Pueden adaptarse y ser utilizados para una diversa gama de fluidos y condiciones, incluyendo viscosos.

-FACILIDAD DE MONTAJE Y DESMONTAJE DEL INTERCAMBIADOR DE CALOR

Las operaciones de mantenimiento y limpieza se efectúan de manera más fácil y rápida. Todas las superficies se pueden limpiar fácilmente ya sea por métodos manuales o químicos. Se reducen los tiempos muertos y no se requiere de un equipo especial de limpieza. Los costos de mantenimiento son menores. Esta ventaja es particular de los de tipo junta ya que los intercambiadores de placas soldadas no pueden ser desmontados (por lo menos completamente) y necesitan de métodos de limpieza más complejos.

-SÓLIDOS EN EL FLUIDO.

No funcionan correctamente con líquidos que tengan sólidos de gran tamaño, debido a la pequeña distancia de separación entre las placas. En general el tamaño máximo admisible de los sólidos en suspensión es de 4 a 8 Pm de diámetro, dependiendo del tipo de intercambiador. Este problema es más frecuente en los termosoldados debido a su dificultad de desmontaje para proceder a su limpieza.

No son convenientes para el uso con líquidos tóxicos o altamente inflamables debido a la posibilidad de rotura de las juntas. Los termo-soldados no presentan este problema así que pueden utilizarse para este tipo de líquidos siempre y cuando el material sea el adecuado.

-CONDENSACIÓN EN EL INTERCAMBIADOR DE CALOR.

Para cada tipo de placa, el agujero de entrada tiene un tamaño fijo que limita la cantidad de fluidos de alto volumen específico (vapores y gases húmedos) que pueden entrar, de modo que este tipo de intercambiadores casi nunca se utilizan en sistemas con gran condensación.

-COEFICIENTE GLOBAL DE TRANSFERENCIA DE CALOR (U).

Se tiene mayor coeficiente global de Transferencia de Calor (U), hasta cinco veces mayores a los que se pueden conseguir en equipos de carcasa y tubos.

Este depende de los coeficientes de Transferencia de Calor por convección de los fluidos frío y caliente, además está influenciado por la forma de las ondulaciones de las placas.

ÁREA DE TRANSFERENCIA.

Menor área de transferencia se consigue en el intercambiador de calor. Esta característica es muy valiosa cuando la naturaleza del líquido es corrosiva y se requiere trabajar con materiales de construcción muy caros.

-PRESIÓN.

La placa de metal con o sin ondulaciones, no es el elemento adecuado para soportar presiones elevadas, de modo que las presiones máximas para los tipos más comunes son de (1,0 a 1,5)*106 [Pa], aunque existen placas capaces de soportar presiones algo mayores. Este problema no es tan notorio en los intercambiadores termo-soldados que pueden llegar a soportar presiones de (3,0 a 3,2)*106 [Pa]. Esto se debe a que no se tiene el riesgo de rotura de la junta. Entonces, las altas presiones son la principal limitación que presenta este prototipo.

-MATERIALES.

Los materiales de las juntas son de varios tipos de elastómeros que tienen un límite máximo de temperatura de funcionamiento (para los materiales más usados) es de 140 a 150 ºC. Los flúor – elastómeros pueden aumentar ese límite hasta los 180 ºC, pero a cambio de un mayor costo. Existen algunos modelos que usan juntas de fibras de amianto comprimido, para los cuales la temperatura límite asciende hasta un máximo de 250 ºC. Por el hecho de no llevar estas juntas, los intercambiadores termo-soldados son capaces de aguantar temperaturas superiores a los 140 -150 ºC de los de tipo junta.

-TAMAÑO.

Tamaño compacto, es decir necesitan una gran área de transferencia por unidad de volumen. El peso y el volumen de la instalación son bajos.

-COSTO INICIAL.

Menor inversión. Se tiene un menor costo como consecuencia de necesitar menor área de transferencia.

-FLUJOS.

Permiten la aplicación de flujos en contracorriente en la mayoría de las aplicaciones.

-TEMPERATURAS.

Aproximaciones de temperatura más cercanas. Se puede trabajar incluso con diferencias de temperatura de hasta 1ºC, maximizando la posibilidad de recuperación de calor. En el control de la temperatura, la forma de los canales de circulación reduce la posibilidad de zonas de retención o estancamiento y sobrecalentamientos locales.

La simetría de la configuración para ambos fluidos permite predecir de antemano y con toda precisión las caídas de presión y la temperatura.

-VOLUMEN DE RETENCIÓN.

Bajo volumen de retención. De un 80 a un 90% menor, lo que genera importantes ahorros cuando se utilizan fluidos costosos, como glicoles y refrigerantes. También es fácil de drenar.

-SUCIEDAD.

Poca acumulación de suciedad. Los factores de acumulación son menores que en el caso de carcasa y tubos. Esta característica presenta dos ventajas, menor necesidad de limpieza, y menores resistencias de ensuciamiento que provocan coeficientes de transferencia globales más pequeños.

-ADAPTABILIDAD DEL INTERCAMBIADOR DE CALOR

La capacidad puede aumentarse o disminuirse con sólo poner o quitar placas. La modificación de la disposición de las placas permite modificar fácilmente el programa de temperaturas de trabajo e incluso su utilización en distintos procesos. Esta característica no la presentan los del tipo termo-soldados ya que su desmontaje y ampliación son imposibles. En el caso de los de carcasa y tubos no es fácil adaptarlos a los cambios de la demanda térmica.

RANGO DE FUNCIONAMIENTO.

Amplio rango de funcionamiento. Incluso sin la necesidad de modificar el número de placas estos permiten un amplio rango de utilización.

-FLEXIBILIDAD

Pueden adaptarse y ser utilizados para una diversa gama de fluidos y condiciones, incluyendo viscosos.

-FACILIDAD DE MONTAJE Y DESMONTAJE DEL INTERCAMBIADOR DE CALOR

Las operaciones de mantenimiento y limpieza se efectúan de manera más fácil y rápida. Todas las superficies se pueden limpiar fácilmente ya sea por métodos manuales o químicos. Se reducen los tiempos muertos y no se requiere de un equipo especial de limpieza. Los costos de mantenimiento son menores. Esta ventaja es particular de los de tipo junta ya que los intercambiadores de placas soldadas no pueden ser desmontados (por lo menos completamente) y necesitan de métodos de limpieza más complejos.

-SÓLIDOS EN EL FLUIDO.

No funcionan correctamente con líquidos que tengan sólidos de gran tamaño, debido a la pequeña distancia de separación entre las placas. En general el tamaño máximo admisible de los sólidos en suspensión es de 4 a 8 Pm de diámetro, dependiendo del tipo de intercambiador. Este problema es más frecuente en los termosoldados debido a su dificultad de desmontaje para proceder a su limpieza.

No son convenientes para el uso con líquidos tóxicos o altamente inflamables debido a la posibilidad de rotura de las juntas. Los termo-soldados no presentan este problema así que pueden utilizarse para este tipo de líquidos siempre y cuando el material sea el adecuado.

-CONDENSACIÓN EN EL INTERCAMBIADOR DE CALOR.

Para cada tipo de placa, el agujero de entrada tiene un tamaño fijo que limita la cantidad de fluidos de alto volumen específico (vapores y gases húmedos) que pueden entrar, de modo que este tipo de intercambiadores casi nunca se utilizan en sistemas con gran condensación.

COTIZA CON NOSOTROS

May 22, 2020

SoporteDeveloper

Compresor de Aire Pequeño Compact Eficiencia en la Conversión Energética 

Los compresores de aire pequeños son herramientas indispensables. Se utilizan en muchas áreas, incluyendo la industria y la automoción. También son útiles para el bricolaje. Entre las opciones disponibles en el mercado, el...

Productos Inducom Destacando en la Ingeniería Hidráulica 

Vamos a explorar la relación entre los productos de Inducom Perú y la infraestructura de conducción de agua en terrenos difíciles. Nos centraremos en las categorías de productos que ofrecen, como bombas, motores eléctricos y...

Principales bombas de agua en Perú 

En Perú, hay varias marcas de bombas de agua reconocidas que son utilizadas en diversos sectores como el residencial, industrial, agrícola, para piscinas, manejo de aguas residuales, y más. Algunas de las marcas más destacadas incluyen:  1.- Ebara Esta es una marca de...

Bombas Sumergibles: Clave para el Desarrollo y Bienestar en Perú

Las bombas sumergibles representan una herramienta fundamental no solo para la industria a gran escala, sino también para el desarrollo sostenible y la mejora de la calidad de vida en las principales ciudades y comunidades...

Caja reductora para motor eléctrico: potenciando el desempeño

En el mundo competitivo de la industria y el comercio, es clave comprender el accionamiento de una caja reductora para motor eléctrico. Pues este dispositivo permite potenciar el rendimiento de diversos sistemas o aplicaciones...

¿Qué es un motorreductor y cómo es su funcionamiento?

Para optimizar el rendimiento operativo de un sistema es necesario comprender de manera clara qué es un motorreductor. Dado que esta unidad ayuda a convertir la energía eléctrica en energía mecánica, mientras disminuye la...

Cómo reducir las revoluciones de un motor con poleas

A la hora de mejorar el rendimiento es vital comprender cómo reducir las revoluciones de un motor con poleas. Pues esta técnica ayuda a impulsar la eficiencia energética y ajustar cualquier cambio en la carga o en las condiciones...

Aceite recomendado para motor reductor: aspectos claves

Conocer las propiedades del aceite recomendado para motor reductor es vital para garantizar un buen desempeño del equipo

Cálculo de potencia de un motor eléctrico trifásico

El cálculo de potencia de un motor eléctrico trifásico es una tarea crucial para garantizar un funcionamiento eficiente y seguro de los equipos industriales.  Por lo tanto, al momento de realizar un diseño eléctrico, el...

¿De qué depende la potencia de un motor eléctrico?

Para la selección, diseño y operación de sistemas industriales es clave conocer de qué depende la potencia de un motor eléctrico en diversas aplicaciones. Dado que esta medida establece la tasa de trabajo ejecutado por un motor en un lapso de tiempo específico. ...

¿Qué es el par de arranque de un motor eléctrico?

En la industria saber qué es el par de arranque de un motor eléctrico permite evaluar su aplicación para distintas aplicaciones. De hecho, este representa la capacidad que tiene el motor para romper la inercia y empezar a girar.

¿De qué está hecho un motor eléctrico?

En la actualidad, comprender de qué está hecho un motor eléctrico es un aspecto clave a la hora de mejorar distintos procesos. Debido a que estos equipos permiten transformar la energía eléctrica en energía mecánica en distintas aplicaciones.  De hecho, entender...

Bombas Centrífugas Prolac HCP de INOXPA en los Juegos Olímpicos de París 2024

La próxima edición de los Juegos Olímpicos de París 2024 contará con una innovación destacada en sostenibilidad gracias a la inclusión de las bombas centrífugas Prolac HCP de INOXPA, una solución eficiente que será empleada para el reciclaje de agua en la Villa...

La Importancia de los Materiales en las Bombas de Engranaje 

Las bombas de engranaje son componentes esenciales en muchas industrias, y su eficacia depende significativamente de los materiales con los que se construyen. Las bombas de engranaje Roper de la serie 3800 son un claro ejemplo de...

¿Qué son las bombas de engranajes y cuáles son sus partes fundamentales?

Las bombas de engranajes son un tipo de bomba volumétrica que se utiliza para el transporte de líquidos. Funcionan mediante el desplazamiento de un fluido a través de la acción de dos engranajes giratorios. Estos engranajes están montados en ejes paralelos y se...

Artículos Relacionados